Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.18.572191

ABSTRACT

Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.22.540829

ABSTRACT

The emergence of three distinct highly pathogenic human coronaviruses, SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019, underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines are highly protective against severe COVID-19 disease, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor binding domains (RBDs), which elicited live-virus neutralizing antibody responses and broad protection. Specifically, a monovalent SARS-CoV-2 RBD scNP vaccine only protected against sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both merbecovirus and sarbecovirus challenge in highly pathogenic and lethal mouse models. Moreover, the trivalent RBD scNP elicited serum neutralizing antibodies against SARS-CoV, MERS-CoV and SARS-CoV-2 BA.1 live viruses. Our findings show that a trivalent RBD nanoparticle vaccine displaying merbecovirus and sarbecovirus immunogens elicits immunity that broadly protects mice against disease. This study demonstrates proof-of-concept for a single pan-betacoronavirus vaccine to protect against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.27.530277

ABSTRACT

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which can readily mutate to escape acquired immunity. Other regions in the spike S2 subunit, such as the fusion peptide and the stem helix, are highly conserved across sarbecoviruses and recognized by broadly reactive antibodies, providing hope that targeting these epitopes by vaccination could offer protection against both current and emergent viruses. Here we employed computational modeling to design epitope scaffolds that display the fusion peptide and the stem helix epitopes. The engineered proteins bound both mature and germline versions of multiple broad and protective human antibodies with high affinity. Binding specificity was confirmed both biochemically and via high resolution crystal structures. Finally, the epitope scaffolds showed potent engagement of antibodies and memory B-cells from subjects previously exposed to SARS-CoV2, illustrating their potential to elicit antibodies against the fusion peptide and the stem helix by vaccination.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.14.507935

ABSTRACT

Antibody affinity maturation enables adaptive immune responses to a wide range of pathogens. In some individuals broadly neutralizing antibodies develop to recognize rapidly mutating pathogens with extensive sequence diversity. Vaccine design for pathogens such as HIV-1 and influenza have therefore focused on recapitulating the natural affinity maturation process. Here, we determined structures of antibodies in complex with HIV-1 Envelope for all observed members and ancestral states of a broadly neutralizing HIV-1 antibody clonal B cell lineage. These structures track the development of neutralization breadth from the unmutated common ancestor and define affinity maturation at high spatial resolution. By elucidating contacts mediated by key mutations at different stages of antibody development we have identified sites on the epitope-paratope interface that are the focus of affinity optimization. Thus, our results identify bottlenecks on the path to natural affinity maturation and reveal solutions for these that will inform immunogen design aimed at eliciting a broadly neutralizing immune response by vaccination. Summary Somatic hypermutation drives affinity maturation of germline-encoded antibodies leading to the development of their pathogen neutralization function 1 . Rational vaccine design efforts that aim to recapitulate affinity maturation rely on information from antibodies elicited and matured during natural infection. High-throughput next generation sequencing and methods for tracing antibody development have allowed close monitoring of the antibody maturation process. Since maturation involves both affinity-enhancing and affinity-independent diversification, the precise effect of each observed mutation, their role in enhancing affinity to antigens, and the order in which the mutations accumulated are often unclear. These gaps in knowledge most acutely hinder efforts directed at difficult targets such as pan-HIV, pan-Influenza, and pan-Coronavirus vaccines. In HIV-1 infection, antibody maturation over several years is required to achieve neutralization breadth. Here, we determined structures of antibodies in complex with HIV-1 Envelope trimers for all observed members and ancestral states of a broadly neutralizing HIV-1 antibody clone to examine affinity maturation as neutralization breadth developed from the unmutated common ancestor. Structural determination of epitope-paratope interfaces revealed details of the contacts evolving over a timescale of several years. Structures along different branches of the clonal lineage elucidated differences in the branch that led to broad neutralization versus off-track paths that culminated in sub-optimal neutralization breadth. We further determined structures of the evolving Envelope revealing details of the virus-antibody co-evolution through visualization of how the virus constructs barriers to evade antibody-mediated neutralization and the mechanisms by which the developing antibody clone circumvents these barriers. Together, our structures provide a detailed time-resolved imagery of the affinity maturation process through atomic level descriptions of virus-antibody co-evolution leading to broad HIV neutralization. While the findings from our studies have direct relevance to HIV-1, the principles of affinity optimization and breadth development elucidated in our study should have broad relevance to other pathogens.


Subject(s)
HIV Infections
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.26.497634

ABSTRACT

SARS-CoV-2 Omicron variants have generated a world-wide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of antibodies induced by vaccination. Here, we describe the SARS-CoV-2 neutralizing SP1-77 antibody that was generated from a humanized mouse model with a single human VH1-2 and V{kappa}1-33-associated with immensely diverse complementarity-determining-region-3 (CDR3) sequences. SP1-77 potently and broadly neutralizes SARS-CoV-2 variants of concern and binds the SARS-CoV-2 spike protein receptor-binding-domain (RBD) via a novel-CDR3-based mode. SP1-77 does not block RBD-binding to the ACE2-receptor or endocytosis step of viral entry, but rather blocks membrane fusion. Our findings provide the first mechanistic insight into how a non-ACE2 blocking antibody potently neutralizes SARS-CoV-2, which may inform strategies for designing vaccines that robustly neutralize current and future SARS-CoV-2 variants.

6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.07.487528

ABSTRACT

The BA.2 lineage of the SARS-CoV-2 Omicron variant has gained in proportion relative to BA.1. As differences in their spike (S) proteins may underlie differences in their pathobiology, here we determined cryo-EM structures of a BA.2 S protein ectodomain and compared these to previously determined BA.1 S structures. BA.2 Receptor Binding Domain (RBD) mutations induced remodeling of the internal RBD structure resulting in its improved thermostability and tighter packing within the 3-RBD-down spike. In the S2 subunit, the fusion peptide in the BA.2 was less accessible to antibodies than in BA.1. Pseudovirus neutralization and spike binding assays revealed extensive immune evasion while defining epitopes of two RBD-directed antibodies, DH1044 and DH1193, that bound the outer RBD face to neutralize both BA.1 and BA.2. Taken together, our results indicate that stabilization of the 3-RBD-down state through interprotomer RBD-RBD packing is a hallmark of the Omicron lineages, and reveal differences in key functional regions in the BA.1 and BA.2 S proteins.

7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.26.477915

ABSTRACT

Coronavirus vaccines that are highly effective against SARS-CoV-2 variants are needed to control the current pandemic. We previously reported a receptor-binding domain (RBD) sortase A-conjugated ferritin nanoparticle (RBD-scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected monkeys from SARS-CoV-2 WA-1 infection. Here, we demonstrate SARS-CoV-2 RBD-scNP immunization induces potent neutralizing antibodies against all eight SARS-CoV-2 variants tested including the Beta, Delta, and Omicron variants in non-human primates (NHPs). The Omicron variant was neutralized by RBD-scNP-induced serum antibodies with a mean of 4.3-fold reduction of ID50 titers compared to SARS-CoV-2 D614G. Immunization with RBD-scNPs protected NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protected mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect NHPs and mice from multiple different SARS-related viruses. Such a vaccine could provide the needed immunity to slow the spread of and reduce disease caused by SARS-CoV-2 variants such as Delta and Omicron.


Subject(s)
Severe Acute Respiratory Syndrome
8.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.25.477784

ABSTRACT

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor binding domain (RBD) and neutralizing antibody epitope presentation affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.

9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.18.473225

ABSTRACT

Summary B cell lineages that are the current focus of vaccine development efforts against HIV-1, influenza or coronaviruses, often contain rare features, such as long heavy chain complementarity determining regions (CDRH3) loops. These unusual characteristics may limit the number of available B cells in the natural immunoglobulin repertoire that can respond to pathogen vaccinations. To measure the ability of a given immunogen to engage naturally occurring B cell receptors of interest, here we describe a mixed experimental and bioinformatic approach for determining the frequency and sequence of CDRH3 loops in the immune repertoire that can be recognized by a vaccine candidate. By combining deep mutational scanning and B cell receptor database analysis, CDRH3 loops were found that can be engaged by two HIV-1 germline-targeting immunogens, thus illustrating how the methods described here can be used to evaluate candidate immunogens based on their ability to engage diverse B cell lineage precursors.


Subject(s)
Influenza, Human , Heavy Chain Disease
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.27.441655

ABSTRACT

SARS-CoV in 2003, SARS-CoV-2 in 2019, and SARS-CoV-2 variants of concern (VOC) can cause deadly infections, underlining the importance of developing broadly effective countermeasures against Group 2B Sarbecoviruses, which could be key in the rapid prevention and mitigation of future zoonotic events. Here, we demonstrate the neutralization of SARS-CoV, bat CoVs WIV-1 and RsSHC014, and SARS-CoV-2 variants D614G, B.1.1.7, B.1.429, B1.351 by a receptor-binding domain (RBD)-specific antibody DH1047. Prophylactic and therapeutic treatment with DH1047 demonstrated protection against SARS-CoV, WIV-1, RsSHC014, and SARS-CoV-2 B1.351infection in mice. Binding and structural analysis showed high affinity binding of DH1047 to an epitope that is highly conserved among Sarbecoviruses. We conclude that DH1047 is a broadly neutralizing and protective antibody that can prevent infection and mitigate outbreaks caused by SARS-like strains and SARS-CoV-2 variants. Our results argue that the RBD conserved epitope bound by DH1047 is a rational target for pan Group 2B coronavirus vaccines.


Subject(s)
Severe Acute Respiratory Syndrome , Infections
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.17.431492

ABSTRACT

Betacoronaviruses (betaCoVs) caused the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, and now the SARS-CoV-2 pandemic. Vaccines that elicit protective immune responses against SARS-CoV-2 and betaCoVs circulating in animals have the potential to prevent future betaCoV pandemics. Here, we show that immunization of macaques with a multimeric SARS-CoV-2 receptor binding domain (RBD) nanoparticle adjuvanted with 3M-052-Alum elicited cross-neutralizing antibody responses against SARS-CoV-1, SARS-CoV-2, batCoVs and the UK B.1.1.7 SARS-CoV-2 mutant virus. Nanoparticle vaccination resulted in a SARS-CoV-2 reciprocal geometric mean neutralization titer of 47,216, and robust protection against SARS-CoV-2 in macaque upper and lower respiratory tracts. Importantly, nucleoside-modified mRNA encoding a stabilized transmembrane spike or monomeric RBD protein also induced SARS-CoV-1 and batCoV cross-neutralizing antibodies, albeit at lower titers. These results demonstrate current mRNA vaccines may provide some protection from future zoonotic betaCoV outbreaks, and provide a platform for further development of pan-betaCoV nanoparticle vaccines.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.31.424729

ABSTRACT

SARS-CoV-2 neutralizing antibodies (NAbs) protect against COVID-19, making them a focus of vaccine design. A safety concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated potent NAbs against the receptor-binding domain (RBD) and the N-terminal domain (NTD) of SARS-CoV-2 spike protein from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV-1 infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of antibody binding. Select RBD NAbs also demonstrated Fc receptor-{gamma} (Fc{gamma}R)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated Fc{gamma}R-independent in vitro infection enhancement. However, both in vitro neutralizing and infection-enhancing RBD or infection-enhancing NTD antibodies protected from SARS-CoV-2 challenge in non-human primates and mice. One of 30 monkeys infused with enhancing antibodies had lung pathology and bronchoalveolar lavage cytokine evidence suggestive of enhanced disease. Thus, these in vitro assessments of enhanced antibody-mediated infection do not necessarily indicate biologically relevant in vivo infection enhancement.


Subject(s)
Severe Acute Respiratory Syndrome , Tumor Virus Infections , COVID-19
13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.31.424961

ABSTRACT

Host-virus protein-protein interaction is the key component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lifecycle. We conducted a comprehensive interactome study between the virus and host cells using tandem affinity purification and proximity labeling strategies and identified 437 human proteins as the high-confidence interacting proteins. Functional characterization and further validation of these interactions elucidated how distinct SARS-CoV-2 viral proteins participate in its lifecycle, and discovered potential drug targets to the treatment of COVID-19. The interactomes of two key SARS-CoV-2 encoded viral proteins, NSP1 and N protein, were compared with the interactomes of their counterparts in other human coronaviruses. These comparisons not only revealed common host pathways these viruses manipulate for their survival, but also showed divergent protein-protein interactions that may explain differences in disease pathology. This comprehensive interactome of coronavirus disease-2019 provides valuable resources for understanding and treating this disease.


Subject(s)
Coronavirus Infections , COVID-19
14.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.30.424906

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has become a serious global threat. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for this pandemic has imposed a severe burden on the medical settings. The spike (S) protein of SARS-CoV-2 is an important structural protein playing a key role in the viral entry. This protein is responsible for the receptor recognition and cell membrane fusion process. The recent reports of the appearance and spread of new SARS-CoV-2 strain has raised alarms. It was reported that this new variant containing the prominent active site mutation in the RBD (N501Y) was rapidly spreading within the population. The reported N501Y mutation within the spike's essential part, known as the receptor-binding domain has raised several questions. Here in this study we have tried to explore the effect of N501Y mutation within the spike protein using several in silico approaches


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
15.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.02.424974

ABSTRACT

COVID-19, caused by SARS-CoV-2, was first reported in China in 2019 and has transmitted rapidly around the world, currently responsible for 83 million reported cases and over 1.8 million deaths. The mode of transmission is believed principally to be airborne exposure to respiratory droplets from symptomatic and asymptomatic patients but there is also a risk of the droplets contaminating fomites such as touch surfaces including door handles, stair rails etc, leading to hand pick up and transfer to eyes, nose and mouth. We have previously shown that human coronavirus 229E survives for more than 5 days on inanimate surfaces and another laboratory reproduced this for SARS-CoV-2 this year. However, we showed rapid inactivation of Hu-CoV-229E within 10 minutes on different copper surfaces while the other laboratory indicated this took 4 hours for SARS-CoV-2. So why the difference? We have repeated our work with SARS-CoV-2 and can confirm that this coronavirus can be inactivated on copper surfaces in as little as 1 minute. We discuss why the 4 hour result may be technically flawed.


Subject(s)
COVID-19
16.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.02.424917

ABSTRACT

SARS-CoV-2 infection of the respiratory system can evolve to a multi-system disease. Excessive levels of proinflammatory cytokines, known as a "cytokine storm" are associated with high mortality rates especially in the elderly and in patients with age-related morbidities. Senescent cells, characterized by secretion of such cytokines (Senescence Associated Secretory Phenotype - SASP), are known to occur in this context as well as upon a variety of stressogenic insults. Applying both: i) a novel "in house" antibody against the spike protein of SARS-CoV-2 and ii) a unique senescence detecting methodology, we identified for the first time in lung tissue from COVID-19 patients alveolar cells acquiring senescent features harboring also SARS-CoV-2. Moreover, using the same detection workflow we demonstrated the inflammatory properties of these cells. Our findings justify the application of senotherapeutics for the treatment or prevention of COVID-19 patients.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , COVID-19
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.30.424745

ABSTRACT

Development of an effective AIDS vaccine remains a challenge. Nucleoside-modified mRNAs formulated in lipid nanoparticles (mRNA-LNP) have proved to be a potent mode of immunization against infectious diseases in preclinical studies, and are being tested for SARS-CoV-2 in humans. A critical question is how mRNA-LNP vaccine immunogenicity compares to that of traditional adjuvanted protein vaccines in primates. Here, we found that mRNA-LNP immunization compared to protein immunization elicited either the same or superior magnitude and breadth of HIV-1 Env-specific polyfunctional antibodies. Immunization with mRNA-LNP encoding Zika premembrane and envelope (prM-E) or HIV-1 Env gp160 induced durable neutralizing antibodies for at least 41 weeks. Doses of mRNA-LNP as low as 5 μg were immunogenic in macaques. Thus, mRNA-LNP can be used to rapidly generate single or multi-component vaccines, such as sequential vaccines needed to protect against HIV-1 infection. Such vaccines would be as or more immunogenic than adjuvanted recombinant protein vaccines in primates.


Subject(s)
HIV Infections , Acquired Immunodeficiency Syndrome , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL